РАДИКАЛЫ СВОБОДНЫЕ - Definition. Was ist РАДИКАЛЫ СВОБОДНЫЕ
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist РАДИКАЛЫ СВОБОДНЫЕ - definition

Радикал (химия); Свободный радикал; Радикалы свободные
  • 1,3,6,8-Тетра-''трет''-бутил-9-карбазильный радикал с т. пл. 145 °С
  • Дифенилпикрилгидразильный радикал
  • Симулированный ЭПР-спектр метильного радикала
  • Димеризация трифенилметильного радикала
  • Гальвиноксильный радикал
  • Устойчивый [[трифенилметил]]ьный радикал
  • Получение трифенилметильного радикала

Радикалы свободные         

кинетически независимые частицы, характеризующиеся наличием неспаренных электронов. Например, к неорганическим Р. с., имеющим на внешнем уровне один электрон (см. Атом, Валентность), относятся атомы водорода Н·, щелочных металлов (Na·, К· и др.) и галогенов (Cl, Br, F, I), молекулы окиси ·NO и двуокиси NO2 азота (точка означает неспаренный электрон). Наиболее широко распространены Р. с. в органической химии. Их подразделяют на короткоживущие и долгоживущие. Короткоживущие алкильные (R) и арильные (Ar) Р. с. со временем жизни менее 0,1 сек образуются при гомолитическом расщеплении различных химических связей. Впервые алкильные Р. с. метил (ĊН3) и этил (СН3ĊН2) были обнаружены (1929) Ф. Панетом при термическом разложении тетраметил- и тетраэтилсвинца в газовой фазе. Для короткоживущих Р. с. характерны реакции рекомбинации (а), присоединения (б) и диспропорционирования (в), протекающие с очень высокими скоростями:

CH3CH2ĊH2 + CH3CH2ĊH2 = CH3(CH2)4CH3 (а)

CH3CH2ĊH2 + R = CH3CH2CH2 (б)

CH3CH2ĊH2 + CH3CH2ĊH2 == CH3CH2CH3 + CH3CH=CH2 (в)

С. Хиншелвуд и Н. Н. Семенов (См. Семёнов) показали важную роль короткоживущих Р. с. в цепных реакциях (См. Цепные реакции), механизм которых включает перечисленные выше типы реакций.

Значительное число Р. с. принадлежит к долгоживущим, или стабильным. В зависимости от условий (например, наличие или отсутствие влаги и кислорода воздуха) продолжительность жизни их составляет от нескольких минут до нескольких месяцев и даже лет. Более высокая устойчивость этих Р. с. обусловлена следующими основными причинами: 1) частичной потерей активности неспаренного электрона в результате взаимодействия его со многими атомами молекулы (т. н. делокализация неспаренного электрона); 2) малой доступностью атома, несущего неспаренный электрон, вследствие экранирования его соседними атомами (см. Пространственные затруднения).

Первый стабильный Р. с. - трифенил-метил (С6Н5)3Ċ был получен (1900) американским химиком М. Гомбергом при действии серебра на трифенилбромметан. Устойчивость этого радикала связана с делокализацией неспаренного электрона по всем атомам, что формально можно объяснить резонансом между возможными электронными структурами (см. Резонанса теория, Квантовая химия):

Известно большое число триарилметильных Р. с. К Р. с., стабильным благодаря пространственным явлениям, относятся продукты окисления замещенных фенолов, т. н. феноксильные Р. с., например три-трет-бутилфеноксил (1). Др. примеры долгоживущих Р. с. - дифенилпикрилгидразил (II), а также иминоксильные Р. с., апреля тетраметилпиперидиноксил (III) и Бис-трифторметилнитроксил (IV):

При окислении или восстановлении нейтральных молекул образуются заряженные Р. с. - катион-радикалы (например, при окислении ароматических углеводородов кислородом) или анион-радикалы (при восстановлении ароматических углеводородов щелочными металлами):

Самостоятельную группу анион-радикалов представляют открытые (1932) нем. химиком Л. Михаэлисом продукты одноэлектронного восстановления хинонов - семихиноны, например бензосемихинон:

Р. с., содержащие два не взаимодействующих друг с другом неспаренных электрона, называют бирадикалами; примером может служить углеводород Шлёнка:

К неорганическим бирадикалам относится молекула кислорода. Существуют также полирадикалы, содержащие более двух неспаренных электронов.

Р. с. исследуются различными физико-химическими методами (электронная спектроскопия, масс-спектроскопия, электрохимические методы, метод ядерного магнитного резонанса). Наиболее эффективен метод электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс) (ЭПР), которым можно исследовать и короткоживущие Р. с. ЭПР даёт уникальную информацию о физической природе неспаренного электрона и характере его поведения в молекуле; эти данные весьма ценны для квантовохимических расчётов.

Короткоживущие Р. с. - промежуточные частицы во многих органических реакциях (радикальное галогенирование, сульфо-хлорирование, металлирование, реакции Виттига, Кольбе, Коновалова, разложение органических перекисей и др.), а также в реакциях, протекающих под действием ионизирующих излучений. Долгоживущие Р. с. используются как стабилизаторы для легко окисляющихся соединений, как "ловушки" для короткоживущих радикалов, а также в ряде кинетических исследований. Изучение катион-радикалов и анион-радикалов даёт ценную информацию о характере взаимодействия ионов в растворе. Р. с. играют большую роль в окислительно-восстановительных, фотохимических и каталитических процессах, а также в важнейших промышленных процессах: полимеризации (См. Полимеризация), теломеризации (См. Теломеризация), Пиролиза, Крекинга, горения (См. Горение), Взрыва, гетерогенного Катализа.

Лит.: Уоллинг Ч., Свободные радикалы в растворе, пер. с англ., М., 1960; Семёнов Н. Н., О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; Бучаченко А. Л., Вассерман А. М., Стабильные радикалы. Электронное строение, реакционная способность и применение, М., 1973.

Н. Т. Иоффе.

В биологических системах многие биохимические реакции протекают с участием Р. с. в качестве активных промежуточных продуктов. Методом ЭПР показано, что все активно метаболизирующие клетки растений и животных содержат Р. с. в концентрации 10-6-10-8 молей на 1 г ткани. Особенно значительна роль Р. с. в реакциях окисления биологического (См. Окисление биологическое), где они участвуют в образовании переносчиков электронов типа хинонов и флавинов, входящих в мембранные структуры. Р. с. возникают также при перекисном окислении липидов в биологических мембранах.

В организме Р. с. могут генерироваться и при действии на него различных физических и химических факторов. В частности, влияние радиации на организмы связывают с образованием Р. с. как при радиолизе воды, содержащейся в клетках (радикалы ·ОН, HO·2), так и при воздействии излучений на молекулы органических веществ и биополимеров клетки (см. Биологическое действие ионизирующих излучений, Кислородный эффект). Иминоксильные Р. с. широко применяют в биохимических исследованиях для выяснения конфигурации белковых молекул (метод спиновой метки и метод парамагнитного зонда) и функциональных свойств биологических мембран.

Лит.: Козлов Ю. П., Свободнорадикальные процессы в биологических системах, в книга: Биофизика, М., 1968; Ингрэм Д., Электронный парамагнитный резонанс в биологии, пер. с англ., М., 1972.

Ю. П. Козлов.

Свободные радикалы         
РАДИКАЛЫ СВОБОДНЫЕ         
атомы или химические соединения с неспаренным электроном (обозначается жирной точкой), напр.. Парамагнитны, реакционноспособны. Короткоживущие радикалы - промежуточные частицы во многих химических реакциях. Некоторые радикалы свободные стабильны и выделены в индивидуальном состоянии. С участием радикалов свободных осуществляются важные биохимические процессы, напр. ферментативное окисление.

Wikipedia

Свободные радикалы

Свободные радикалы в химии — частицы, содержащие один или несколько неспаренных электронов на внешней электронной оболочке. Свободные радикалы бывают твёрдыми, жидкими и газообразными веществами и могут существовать от очень короткого (доли секунды) до очень долгого времени (до нескольких лет). Радикалы могут быть не только нейтральными, но и ионными (ион-радикалы), а также иметь более одного неспаренного электрона (как, например, у бирадикалов). Свободные радикалы обладают парамагнитными свойствами и являются очень реакционноспособными частицами.